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NON-LINEAR BEARING STIFFNESS PARAMETER
EXTRACTION FROM RANDOM RESPONSE IN
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A procedure for estimation of non-linear stiffness parameters of rolling element bearings
supporting a flexible rotor, based on analysis of the random response signals picked up
from the bearing caps, is developed. The non-linear multi-degree-of-freedom equations,
governing the motion of a flexible shaft carrying a disc and experiencing random excitations
due to imperfections of the bearing surfaces and assembly, are subjected to co-ordinate
transformation and subsequently modelled as multi-dimensional Markov process through
the Fokker–Planck equation. The solution procedure for the Fokker–Planck equation and
the assumptions involved are outlined. The vibrations experienced at the bearings are
processed through a curve fitting algorithm to obtain the necessary bearing stiffness
parameters. The technique has an advantage over other existing ones in that it does not
require an estimate of the excitation forces and measurements of vibrations at the rotor
disc and works directly on the response signals from the bearing caps. The algorithm is
illustrated for a laboratory rotor–bearing test rig and the result are compared with those
obtained through an existing analytical model. The developed algorithm is tested by
numerical simulation.
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1. INTRODUCTION

Estimation of bearing stiffness parameters is crucial to rotor designs. Stiffness estimation
involves establishing a relationship between the load carried by the bearing and its
deformation. The classical solution for the local stress and deformation of two elastic
bodies apparently in contact at a single point was established by Hertz [1]. The early studies
[2, 3] on bearings concern vibrations caused due to geometric imperfections of contact
surfaces. Honrath [4] and Elsermans et al. [5] examined the stiffness and damping of rolling
element bearings experimentally. Theoretical models [6, 7] are available for estimation of
bearing stiffness under static loading conditions. A method for determination of the
non-linear characteristics of bearings using the procedure of Krylov–Bogoliubov–Mitro-
polsky has been suggested by Kononenko and Plakhtienko [8]. Walford and Stone [9]
designed and fabricated a test rig for direct measurement of the relative displacement of
the shaft and bearing housing for the oscillating force applied to the bearing housing,
which is used to obtain the stiffness parameters. Comprehensive investigations have been
carried out on the high frequency response of bearings [10] and its relation to surface
irregularities [11–13]. Kraus et al. [14] presented a method for the extraction of rolling
element bearing stiffness and damping under operating conditions. The method is based
on experimental modal analysis combined with a mathematical model of the
rotor–bearing–support system. The method is applied for investigation of the effect of
speed, pre-load and free outer race bearings on stiffness and damping. Muszynska [15] has
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developed a perturbation technique for estimation of these parameters. The technique
involves a controlled input excitation to be given to the bearings. Goodwin [16] reviewed
the experimental approaches to rotor support impedance measurement. Non-linear
stochastic contact vibrations and friction at a Hertzian contact have been studied by Hess
et al. [17]. The experimentation involves excitation of the bearings either externally by a
white Gaussian random normal load or within the contact region by a rough surface input
and the analytical approach is based on the solution of the Fokker–Planck equation. Lim
and Singh [18] have analyzed the vibration transmission through rolling element bearings
and effect of distributed contact load on roller bearing stiffness.

Recently, Tiwari and Vyas [19] proposed a technique for estimation of non-linear
stiffness of rolling element bearing in rigid rotor–bearing systems, based on analysis of the
random response signals picked up from the bearing caps. The governing non-linear
single-degree-of-freedom equation with a random excitation force, resulting due to random
imperfections of the bearing surfaces and assembly was modelled as one-dimensional
Markov process through the Fokker–Planck equation. The solution of the Fokker–Planck
equation was further processed to obtain the linear and non-linear bearing stiffness
parameters. The technique has an advantage over other existing ones in that it does not
require an estimate of the excitation forces and works directly on the response signals from
the bearing caps.

The present study attempts to solve the problem of bearing stiffness parameter
estimation for flexible rotors. In contrast to the rigid rotor case, which could be treated
as a single-degree-of-freedom problem, the flexible rotor analysis becomes far more
involved, for it poses a non-linear multi-degree-of-freedom case. The problem has been
formulated for bending vibrations of a flexible shaft carrying a centrally located rigid disc
and supported at the ends in non-linear bearings. Torsional modes of rotating machinery
generally occur at speeds much higher than the bending criticals. Coupling between
bending and torsion can occur in machinery involving elements such as flexible couplings
between driving and driven units [20]. Torsional stiffness of the shaft is not accounted for
in the present formulation. The procedure developed is illustrated for rotors supported in
rolling element ball bearings, for which cross-coupled stiffness effects are weak and can
be ignored. The excitation to the balanced system is taken to be random in nature,
primarily arising out of bearing and assembly imperfections. The inverse problem of
parameter estimation is approached by initially effecting a co-ordinate transformation.
This transformation allows the governing equations to be modelled as multi-dimensional
Markov processes through the Fokker–Planck equations. The solution to the
Fokker–Planck equation is obtained under certain engineering assumptions. A curve fitting
algorithm is developed to process the statistical response of the system obtained by the
solution of the Fokker–Planck equation to extract the rotor–bearing stiffness parameters.
The procedure is illustrated for a laboratory test rig and the experimental results are
compared with the analytical guidelines of Harris and Ragulskis [6, 7]. The algorithm
developed is tested by the Monte Carlo numerical simulation procedure.

2. EQUATIONS OF MOTION

A balanced rotor, with a centrally located disc on a massless flexible shaft supported
in bearings at the ends, is shown in Figure 1. The shaft is treated as a free–free body,
carrying unknown effective bearing masses m1 and m2 at its ends and the known disc mass
m3 in the center. The bearings are incorporated through external ‘‘forces’’, Fb , acting on
masses m1 and m2. Taking the shaft stiffness and damping forces as Fs and Fd , respectively,
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Figure 1. A flexible rotor on rolling element bearings.

the equations of motion are written as (the problem formulation in the horizontal direction
remains identical to that in the vertical direction)

−Fd1 −Fs1 −Fb1 =m1ẍ1, −Fd2 −Fs2 −Fb2 =m2ẍ2, −Fd3 −Fs3 =m3ẍ3. (1–3)

The shaft stiffness forces are

Fs1 = (k11x1 + k12x2 + k13x3), Fs2 = (k12x1 + k22x2 + k23x3),

Fs3 = (k13x1 + k23x2 + k33x3). (4)

The shaft stiffness parameter kij is defined as the ith force corresponding to a unit j
deflection with all other deflections held to zero and can be obtained from strength of
materials formulae.

The shaft damping forces are

Fd1 = a11ẋ1 + a12ẋ2 + a13ẋ3, Fd2 = a12ẋ1 + a22ẋ2 + a23ẋ3,

Fd3 = a13ẋ1 + a23ẋ2 + a33ẋ3. (5)

The shaft damping parameter, aij , can be defined in a manner similar to kij .
The excitation to the system is taken to be random in nature. The bearing surface

imperfections, caused by the random deviations from their standard theoretical design and
progressive surface and subsurface deteriorations, are large enough to cause measurable
levels of vibration and can be the primary source of these excitations. In addition,
excitation can arise from inaccuracies in the rotor–bearing–housing assembly etc. Taking
s1 and s2 as the effective random displacements at the bearings, primarily due to surface
imperfections and inaccuracies in the rotor–bearing–housing assembly, the bearing forces
on masses m1 and m2 can be written as

Fb1 = {kL1(x1 − s1)+ kNL1G(x1 − s1)}, Fb2 = {kL2(x2 − s2)+ kNL2G(x2 − s2)} (6)

In the above, kL and kNL are the unknown linear and non-linear bearing stiffness parameters
and G can be a polynomial in x.



.   . . 392

Equations (6) can be rewritten, more generally, as

Fb1 = {kL1x1 + kNL1G(x1)}−F1(t), Fb2 = {kL2x2 + kNL2G(x2)}−F2(t), (7)

where F1(t) and F2(t) are the random components of the bearing forces.
Using equations (4), (5) and (7) the equations of motion (1)–(3) can be written as

[21, 22]
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The Markov vector approach extended to non-linear multi-degree-of-freedom systems
[23] is adopted for the solution of equations (8)

The equations of motion (8) with damping and forces F1 and F2 set to zero, are solved
for eigenvalues p2
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3 and the orthonormal modal matrix [U], so that
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(The eigenvalue and eigenvector matrix elements are given in Appendix A.)
Application of the co-ordinate transformation
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to the equations of motion (8) yields
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where
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The modal masses M1, M2 and M3 are given by

M1 =m1 +m2 +m3, M2 = u2
31m1 +m2 + u2

32m3, M3 = u2
21m1 +m2 + u2

22m3.

3. RESPONSE

The approach to obtaining the response of the system is greatly simplified if the random
excitation to the system is assumed to be such that the generalized forces, qi , in equations
(15) can be treated as ideal white noise. Many engineering applications are based on this
idealization, and it turns out that the responses obtained through such models are quite
acceptable if the time scale of the excitation is much smaller than the time scale of the
response [24]. The time scale of the excitation is the correlation time, roughly defined as
the length of time separation beyond which excitation process is nearly uncorrelated. The
time scale of the response is the measure of the memory duration of the system, which
is generally about one-quarter of the natural period of a mode that contributes significantly
to the response. The excitation of equation (15) is treated as uncorrelated Gaussian, white
random forces with the following properties:

E[q1(t)]=0, E[q2(t)]=0, E[q3(t)]=0,

E[q1(t1)q1(t2)]=2pf1d(t2 − t1), E[q2(t1)q2(t2)]=2pf2d(t2 − t1),

E[q3(t1)q3(t2)]=2pf3d(t2 − t1), (19)

where f1, f2 and f3 denote the excitation intensity factors and d(t2 − t1) is the Dirac delta
function.
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The joint probability density function, p(h1, h2, h3, ḣ1, ḣ2, ḣ3), for the motion governed
by equations (15) and excitation with properties described by equations (19) can be
described by the Fokker–Planck equation [25]
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For a stationary case, equation (20) is reduced to
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With the assumption [22]

0 b11

M1f11=0 b22

M2f21=0 b33

M3f31= g,

equation (21) can be solved to obtain the joint probability density of displacements and
velocities in terms of the transformed co-ordinate system as [25]
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Performing the inverse orthonormal transformation and noting that the term
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2
3 +V(h1h2h3) on the right side of equation (22) represents the total

kinetic and potential energy of the system and that g is a constant, the joint probability
density of displacements and velocities in the original set of co-ordinates is
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The joint probability functions p(x1, x2, x3) and p(ẋ1, ẋ2, ẋ3) are obtained from equation
(23) as [26]
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with
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3 )}%. (25)

The joint probability function p(x1, x2) is obtained as
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=$1pXm2g

2 %exp$−g

p 612 m2ẋ2
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The variances of the velocity responses ẋ1 and ẋ2 are obtained as follows:
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Combining equations (29) and (30),
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The joint probability density function for the displacement responses x1 and x2, from
equations (26) and (31), can be written as

p(x1, x2)= c2 exp$−zm1m2
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4. EXTRACTION OF BEARING PARAMETERS

The bearing parameters are obtained from the experimentally obtained random response
in terms of the linear stiffness parameters v2

n1
and v2

n2
, the non-linear stiffness parameters

l1 and l2, and the disc–bearing mass ratios m1 and m2. These parameters are obtained for
both the vertical and horizontal directions, with the problem formulation, in the horizontal
direction, remaining identical to that in the vertical direction.

The joint probability density function p(x1, x2) for a set of displacements (x1i , x2j )
(x1(i+1), x2(j+1)), (x1(i+1) q x1i and x2(j+1) q x2j ), from equation (32) are as follows:
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p(x1(i+1), x2(j+1))= c2 exp$−zm1m2
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Defining
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Combining equations (34) and (33) gives

p(x1(i+1), x2(j+1))= p(x1i , x2j )exp$−zm1m2
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For N values of each displacement, x1i , x12, . . . , x1N , and x21, x22, . . . , x2N , equation (35)
can be expressed as a set of (N−1)2 linear simultaneous algebraic equations, as
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Figure 2. The rotor–bearing set-up.
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i=1, 2, . . . , (N−1), j=1, 2, . . . , (N−1). (36)

Equations (36) are solved for v2
n1
, v2

n2
, l1, l2 and zm1m2, using the least square fit

technique. The joint probability function, p(x1, x2) and variances, s2
ẋ1

and s2
ẋ2
, are computed

from the experimentally obtained displacement and velocity data (x1, x2, ẋ1 and ẋ2), which
are taken as zero mean Gaussian processes, and the non-linear spring force provided by
the rolling element bearings is taken to be cubic in nature; i.e., G(x)= x3. The stiffness
matrix definition for the three body lumped parameter shaft model (Figure 1) is as follows
[21]:

[K]=m3&v
2
11

v2
31

v2
21

v2
13

v2
33

v2
23

v2
12

v2
32

v2
22'=12EI

L3 & 1
−1

0

−1
2

−1

0
−1

1'. (37)

The laboratory rig for the experimental illustration of the technique is shown in
Figures 2 and 3. The rig consists of a disc centrally mounted on a shaft supported in two
ball bearings. The shaft is driven through a flexible coupling by a motor and the vibration
signals are picked up (after balancing the rotor) in both the vertical and horizontal
directions by accelerometers mounted on both of the bearing housings. The signals from
the accelerometers are digitized on a PC/AT after magnification.

Typical displacement and velocity signals, in the vertical direction, picked up by the
accelerometer are given in Figures 4–7. The joint probability density function, p(x1, x2),
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Figure 3. The accelerometer locations.

Figure 4. The displacement signal in the vertical direction at bearing 1.

of the displacements is shown in Figure 8. The bearing parameters estimated from
equations (36), with the following set of data, EI=1·03×108 N mm2, m3 =0·515 kg,
L=250·0 mm, are given in Table 1. Bearing stiffness parameters estimated for the
horizontal direction are also given in this table, along with those estimated for the vertical
direction. The analysis in the horizontal direction remains similar to that in the vertical
direction and the horizontal parameters are obtained from the horizontal displacement and
the velocity signals; i.e., (y1, y2, ẏ1, ẏ2) from equations similar to equations (36).

Figure 5. The velocity signal in the vertical direction at bearing 1.



.   . . 400

Figure 6. The displacement signal in the vertical direction at bearing 2.

Figure 7. The velocity signal in the vertical direction at bearing 2.

5. SIMULATION

The algorithm is tested by Monte Carlo simulation. The experimentally obtained
values of v2

n1
, v2

n2
, l1, l2 and zm1m2 are used in equation (8) to simulate the displacement

and velocity responses, x1, x2, ẋ1 and ẋ2, through the fourth order Runga–Kutta numerical
technique, for broad-band excitation forces, f1(t) and f2(t), with zero mean and Gaussian
probability distribution as described in Figures 9–12. The vertical displacement and
velocity responses resulting at the two bearings due to the simulated forces of Figures 9–12
are given in Figures 13–16. The joint probability distribution of the simulated vertical
displacements is shown in Figure 17. The simulated response is now fed into equation (36)

Figure 8. The joint probability density distribution of vertical displacements at bearing 1 and bearing 2.
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T 1

Experimental bearing stiffness and mass parameters

Parameters Vertical Horizontal

v2
n1

(rad/s)2 2·13×107 2·12×107

l1 (mm)−2 −1·25×106 −1·41×106

v2
n2

(rad/s)2 1·98×107 2·21×107

l2 (mm)−2 −1·15×106 −1·36×106

zm1m2 2·10 2·34

to obtain the values of v2
n1
, v2

n2
, l1, l2 and zm1m2. A similar exercise is carried out to obtain

the parameters in the horizontal direction. These values are listed in Table 2.
The good agreement between the values of the bearing stiffness parameters, v2

n1
, v2

n2
, l1,

l2 and zm1m2, obtained by processing the experimental data and those from the Monte
Carlo simulation, indicates the correctness of the experimental and algebraic exercises. It
should be noted that the simulated values of the bearing stiffness parameters are obtained
for an ideal white noise excitation, while the experimental ones are obtained by processing
the actual response of the system, where the unknown excitation was idealized as white
noise. It also needs to be pointed out that the values of the damping parameters aij , are
not required for the estimation procedure (equation (36)). Any convenient set of values
of aij can be employed in equations (8)–(10) for the purpose of simulation.

6. VALIDATION

The values of the bearing stiffness parameters v2
n and l, obtained by the procedure

outlined, are compared with those obtained from the analytical formulations of Harris [7]

Figure 9. The simulated random force at bearing 1.

Figure 10. The probability density distribution of the simulated force at bearing 1.
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Figure 11. The simulated random force at bearing 2.

Figure 12. The probability density distribution of the simulated force at bearing 2.

and Ragulskis [6], which are based on Hertzian contact theory. The total elastic force at
the points of contact of the ith ball with the inner and outer races is expressed as [6]

Fi =Kn (g+ x cos hi + y sin hi )3/2 (38)

and its projection along the line of action of the applied force is

Fi =Kn (g+ x cos hi + y sin hi )3/2 cos hi , (39)

where g is the radial preload or preclearance between the ball and the races, and x and
y are the displacements of the moving ring in the direction of the radial load and
perpendicular to the direction of the radial load respectively. hi is the angle between the
lines of action of the radial load (direction of displacement of the moving ring) and the
radius passing through the center of the ith ball. Kn is a coefficient of proportionality
depending on the geometric and material properties of the bearing. The specifications of
the two test bearings are as follows: ball bearing type, SKF 6200; number of balls, six;

Figure 13. The simulated displacement signal at bearing 1.
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Figure 14. The simulated velocity signal at bearing 1.

Figure 15. The simulated displacement signal at bearing 2.

Figure 16. The simulated velocity signal at bearing 2.

Figure 17. The joint probability density distribution.
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T 2

Experimental and simulated bearing stiffness and mass parameters

Vertical Horizontal
ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

Parameters Experimental Simulated Experimental Simulated

v2
ni

(rad/s)2 2·13×107 2·12×107 2·11×107 2·21×107

l1 (mm)−2 −1·25×106 −1·41×106 −1·29×196 −1·45×106

v2
n2

(rad/s)2 1·98×107 2·21×107 1·95×107 2·23×107

l2 (mm)−2 −1·15×106 −1·36×106 −1·63×106 −1·86×106

zm1m2 2·10 2·43 2·34 2·50

ball diameter, 6 mm; bore diameter, 10 mm; outer diameter, 30 mm; pitch diameter,
20 mm; groove radius, 3·09 mm; allowable pre-load, 0–2 mm. The value of Kn , for the test
bearing with the above specifications, is estimated by the method suggested by Harris [7]
as 2·82×105 N/mm1·5.

The total elastic force in the direction of the applied force is

F= s
n

i=1

Fi , (40)

where n is the total number of balls in the bearing. Using the condition of zero elastic force
in the direction perpendicular to the elastic load, the deformation, y, perpendicular to the
radial force line is expressed as

y= s
n

i=1

[g+ x cos (hi )]3/2 sin (hi )>s
n

i=1

[g+ x cos (hi )]1/2 sin2 (hi ). (41)

Equations (39) and (41) are used in equation (40) and the bearing stiffness is determined
as a function of the deformation x as

k(x)= 1F/1x. (42)

Figure 18. A comparison of the rolling element bearing stiffnesses at bearing 1.
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Figure 19. A comparison of the rolling element bearing stiffnesses at bearing 2.

It can be seen that the bearing stiffness is critically dependent on the pre-loading, g, of
the balls. While the manufacturer may, at times, provide the pre-load range, the exact value
of the pre-loading of the bearing balls in the shaft–casing assembly, especially during
operations which have involved wear and tear, would be difficult to determine. The stiffness
of the test bearing is plotted in Figures 18 and 19 as a function of the radial deformation,
x, for various allowable preload values, g. The bearing stiffness obtained experimentally,
using the procedure developed, also shown in Figures 18 and 19, shows good resemblance
to theoretically possible values. It is also to be noted that the theoretical stiffness
calculations are based on formulations which analyze the bearing in isolation of the shaft.
The comparison between the experimental and theoretically possible stiffness is also listed
in Table 3. The expressions for the theoretical stiffness in Table 3 have been obtained by
curve fitting the stiffness values obtained from equation (36), through a quadratic in x.

In an earlier analysis by the authors [19], where the shaft flexibility was not accounted
for and was treated as a rigid body, and the analysis was restricted to a
single-degree-of-freedom idealization, the bearing stiffness for the same experimental
set-up was found to be 1·32×104–5·08×1010x2 (N/mm) and 2·23×104–8·50×1010x2

T 3

Experimental and theoretical [6, 7] bearing stiffness parameters

Theoretical stiffness Experimental stiffness Experimental stiffness
Preload (radial) (N/mm) (N/mm)
(mm) (N/mm) (at bearing 1) (at bearing 2)

0·0002 1·20×104–4·01×1010x2

1·08×104–4·19×1010x2 1·01×104–4·91×1010x2

(horizontal) (horizontal)
0·0003 1·47×104–2·18×1010x2

0·0004 1·69×104–1·42×1010x2

0·0005 1·89×104–1·02×1010x2

1·10×104–4·13×1010x2 1·02×104–3·52×1010x2

(vertical) (vertical)
0·0006 2·08×104–6·09×109x2
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(N/mm) in the horizontal and vertical directions respectively. A comparison with the
stiffness values of Table 3 reveals the influence of shaft flexibility.

While good agreement on the bearing stiffness parameters is observed between the values
generated following the method of Harris and Ragulskis [6, 7] and those obtained
experimentally through the present procedure, the values of the effective masses at the
bearing ends, obtained as by-products of the present procedure, also look reasonable. The
experimentally obtained values of zm1m2 are 2·1 and 2·34 (Table 1) in the vertical and
horizontal directions respectively. If the two bearings are taken to be identical, the effective
mass computed (knowing that the disc mass is 0·515 kg) for each of the bearing ends turns
out to be 0·245 kg in the vertical direction and 0·220 kg in the horizontal direction. These
values look reasonable, in view of the fact that along with some contribution from the
bearings themselves, a division of the mass of the shaft, which in this case is 0·306 kg, is
seen at the two bearing ends.

7. CONCLUSIONS

The procedure outlined for estimation of linear and non-linear bearing stiffness
parameters from random response in flexible rotors, although developed for a shaft
carrying a single disc, can be readily employed for shafts with multiple discs. While making
certain engineering approximations, of idealizing the excitations from bearing surface and
assembly imperfections as white noise sources, the procedure holds a distinct advantage
over other available techniques, in that it does not involve estimation of the excitation
forces and works directly on the random response signals which can be conveniently picked
up at the rotor–bearing caps.
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APPENDIX A: EIGENVALUES AND EIGENVECTORS

Eigen values:

p2
1 =0,

p2
2,3 =

$12EI
m3L3% m1m3+2m1m2+m2m33z−4m1m2m3(m1 +m2 +m3)+ (m1m3 +2m1m2 +m2m3)2

2m1m2m3
.

Eigen vectors:

U= &111 u31

u32

1

u21

u22

1 ',
with

u21 =−1

+
1

4m2
1m2m3

[{m1m3 −2m1m2 −m2m3 +zm2
1m2

3 −2m1m2m2
3 +4m2

1m2
2 +m2

2m2
3}

× {−m1m3 +2m1m2 −m2m3 +zm2
1m2

3 −2m1m2m2
3 +4m2

1m2
2 +m2

2m2
3}],
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u22 =
{m1m3 −2m1m2 −m2m3 +zm2

1m2
3 −2m1m2m2

3 +4m2
1m2

2 +m2
2m2

3}
2m1m3

,

u31 =−1

+
1

4m2
1m2m3

[{m1m3 −2m1m2 −m2m3 −zm2
1m2

3 −2m1m2m2
3 +4m2

1m2
2 +m2

2m2
3}

× {−m1m3 +2m1m2 −m2m3 −zm2
1m2

3 −2m1m2m2
3 +4m2

1m2
2 +m2

2m2
3}].

u32 =
{m1m3 −2m1m2 −m2m3 +zm2

1m2
3 −2m1m2m2

3 +4m2
1m2

2 +m2
2m2

3}
2m1m3

,

APPENDIX B: NOMENCLATURE

c1, c2, c3 normalization constants
Fi random excitation force
Fb bearing force
Fd shaft damping force
Fs shaft stiffness force
g pre-load on the rolling elements
g(x), G(x) non-linear functions
kL , kNL linear and non-linear stiffness par-

ameters of bearings
kij shaft stiffness parameter
k(x) = kL + kNLx2, bearing non-linear

stiffness
Kn coefficient of proportionality
m1, m2 effective bearing masses
m3 disc mass
N number of sample points
p(x), p(ẋ) probability density functions of

displacement and velocity, respect-
ively

uij eigenvector elements
x, y, z rectangular co-ordinate system
x, ẋ, ẍ displacement, velocity and accelera-

tion, respectively
t time
V(x) potential energy term
aij shaft damping parameter
hi generalized co-ordinates
fi random excitation intensity factor
g = b/mf, ratio
l = kNLi /v

2
ni
m3, non-linear stiffness

contribution parameter
mi disc mass to effective bearing mass

ratio
v2

ij = kij /m3, shaft stiffness parameter
v2

nij
= kLi /m3, bearing linear stiffness
parameter

s2
ẋ variance of velocity


